Mitochondrial DNA “mtDNA”

 

 

 

If you are frustrated or just need direction sin finding all those female ancestors with missing maiden names, or if you are not sure which Julia is your great-grandmother, you can look no further than the answers provided by mitochondrial DNA (mtDNA). One of the most powerful tools available to African-American genetic genealogists and African-American genealogists (new term genetealogy (ge-neh-tee-ol-0-gee), mtDNA offers a glimpse into the the maternal lines of even your most challenging ancestors. So how can mtDNA help you?

mitochondrial_dna_lg

 

Each mitochondrion contains its own DNA and its own protein-synthesizing machinery. They reproduce by splitting in two after they make a second copy of the DNA. In humans, the mtDNA is in the form of a circle that contains approximately 16,500 nucleotide base pairs of DNA. (DNA molecules consist of two paired strands, and each strand is a long chain of four types of nucleotides, designated A, G, C and T.) In contrast, the DNA in the nucleus is divided into 46 linear chromosomes (23 from each of our parents) that have an average length of more than 200 million base pairs. Each person’s mitochondria come from the cytoplasm of the mother’s egg. The father’s sperm cells also contain mitochondria, but they are not inherited by his offspring.

Before people started to travel around the world, the rare changes that occurred in mtDNA over time resulted in unique types of mtDNA on every continent. Therefore, most contemporary mtDNAs can be assigned  to a continent of origin based on the nucleotide sequence of the most variable region (Hypervariable control region HVRI) of the mtDNA. The HVRI region is about 400 base pairs in length and is the region where the mitochondria start making a new copy of their DNA. It is the region of the DNA molecule where mutations (changes) are most likely to occur. When a scientist determines the order of the four nucleotides in this region, they find a record of all of the mutations that have occurred over time as the mtDNA was passed from mother to daughter from generation to generation. These accumulated mutations are the basis for the unique types of mtDNA found on each continent. HVR2 is the second region and they both accumulate changes relatively quickly, and thus tend to be hype-variable from one person to the next unless those people are closely related. The third portion, the coding region (CR), accumulates far fewer changes and contains the nucleotide base pair sequence for mitochondrial genes.

Example: mtDNA Family Member

Chr 2

Match ID Type Name Matching segments on Chromosome 2 Overlap with previous match
1 F2 (A982870) 104323793 – 130334843 (24.045 cM) New Root

 

Within continents, regional mtDNA variation can be observed as well. When a woman’s mtDNA contains a new mutation, her descendants are likely to live near her. Therefore, a local area where she lived will be the only place in the world where this particular type of mtDNA is found. However, whenever people moved from one place to another they took their mtDNA with them. In sub-Saharan Africa, for example, there have been extensive movements of people over time. As such, a recent study has shown that approximately half of all African mtDNAs are shared among people from multiple countries in Africa. If an African-American has one of these shared mtDNAs, it is not possible to determine which country was the original home of the maternal ancestor who came to the U.S.

A second problem is that many African-Americans have a particular type of mtDNA that is clearly African in origin, but has not yet been observed among the African mtDNAs that have been analyzed. This situation occurs because there is an incredible amount of genetic diversity among Africans and African mtDNAs have not been studied extensively. In fact, the mtDNAs from many African ethnic groups have not been analyzed at all. Additional studies will help with this situation. However, if a particular mtDNA is rare enough to be found in only a small region of Africa, there is a good chance it will be difficult for researchers to find it. Some people suggest comparing these rare mtDNAs to similar mtDNAs that have already been found in Africa. However, when these comparisons are made, the rare mtDNA is usually similar to one of the common mtDNAs that are found in many countries. Therefore, it is not likely that a particular person’s mtDNA can be assigned to a particular country of origin. This conclusion is true not only for African mtDNAs, but also mtDNAs from every other continent as well.

Coming Soon:

Y-DNA| atDNA| Y-DNA Standards

Source: Scientific America, “How Do Researchers Trace Mitochondria DNA Over Centuries?” Digital Access 12/7/2016

National Institute of Health Genome Project, Digital Library, Cell Structure 2016

 

 

 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: